Discovery of new superheavy elements Z=114-118 at the Dubna Gas-Filled Recoil Separator: Sum of the Technologies

Yu.S. Tsyganov
FLNR, JINR +

@Collaboration Dubna-Livermore-Oak Ridge-Lanzhou (since 2016)
FLNR(JINR), LLNL, ORNL, IMP
tyra@jinr.ru, +7-4962167590

1. **Introduction:** DGFRS, detection system, real-time algorithm to search for ER-α sequences, SHE

2. **Examples of application:** Og, Z=118, Ts, Z=117, 240,239Pu + 48Ca-*Fl (in brief)

3. (nearest future~2019) **Ultra high beam intensities. SHE Factory of FLNR.** (DC-280 project). ~5-10 μA 48Ca, 50Ti..! New separator design, new detection system

4. **Summary**

- Discovery of nuclear fission
- Nuclear explosions
- Nuclear reactors with neutrons
- Chemistry of actinides
- Discovery of SF-isomers
- SHE may exist
- SF-modes
- Cold fusion reactions
- Recoil separators
- SCIENCE and TECHNOLOGIES

Watch movie: http://www.youtube.com/watch?v=oRkc521no94
sum of technologies...

- Cyclotron ~ 1 pmcA (48Ca beam)
- Actinide target (rotating) to apply high intensity for a long time
- Rotating entrance window (to separate high cyclotron vacuum and 1 Torr H$_2$ separator working media)
- Gas–Filled Separator (to suppress primary beam and other backgrounds)
- Detection system (to extract ultra rare decays of SHN)
Lay-out of the DGFRS spectrometry complex for experiments with 48Ca projectiles

..subsystems

Blue – monitoring & protection

Green – detection

Magenta – “active” correlations search for ER-alpha

Red – aerosol control (rad. safety staff, **autonomous**)

PC with CAMAC controller

Detection System

DSSSD

Remote control room

Aerosol Test

Beam chopper
The DGFRS Focal Plane Detectors since ~1990

<table>
<thead>
<tr>
<th>Type</th>
<th>Size</th>
<th>~year</th>
<th>manufacturer</th>
<th>Additional info</th>
</tr>
</thead>
<tbody>
<tr>
<td>n-Si(Au)</td>
<td>55 mm diam</td>
<td>1988-1989</td>
<td>FLNR, JINR</td>
<td>Adjustment of the DGFRS</td>
</tr>
<tr>
<td>P-Si(Al)</td>
<td>48 mm</td>
<td>1989-1992</td>
<td>FLNR, JINR</td>
<td>To measure Efficiency (separate chamber) Ruggeri zed surface- a little washing with acetone was possible</td>
</tr>
<tr>
<td>n-Si(Au)</td>
<td>18 mm x 6 det array</td>
<td>1990</td>
<td>FLNR, JINR</td>
<td>40Ar+207Pb→244Fm + 3n experiment (neg res)</td>
</tr>
<tr>
<td>n-Si (Au)</td>
<td>2x2.5 cm x 6 det</td>
<td>1991-1993</td>
<td>FLNR, JINR</td>
<td>Ch. St. systematic, Some HI exp-s e.g. U+Ne, O. 207Pb+40Ar→244Fm + 3n</td>
</tr>
<tr>
<td>PIPS pos. sens.</td>
<td>1x4 x 12 strip</td>
<td>1994-2008</td>
<td>CANBERRA NV, Belgium</td>
<td>48Ca beam+AcTag</td>
</tr>
<tr>
<td>PIPS pos. sens.</td>
<td>0.37 x 6 x 32 strip</td>
<td>2009 – 2013</td>
<td>CANBERRA NV, Belgium</td>
<td>48Ca+249Bk→117</td>
</tr>
<tr>
<td>DSSSD</td>
<td>6x12 cm² 48x128 strips (~330 µm depth)</td>
<td>2013 November, Micron Semiconductor, UK</td>
<td>48Ca +240Pu</td>
<td></td>
</tr>
<tr>
<td>Solid state (plastic)</td>
<td>14x6 cm²</td>
<td>1989</td>
<td>JINR</td>
<td>207Pb+40Ar→244Fm + 3n</td>
</tr>
</tbody>
</table>

PIPS Canberra NV 32 strips

\[^{40}\text{Ar}+^{207}\text{Pb} \rightarrow ^{244}\text{Fm} + 3n \]
It provides:

- Parameter monitoring, visualization associated with: cyclotron beam, detection system, separator by itself;

- Protection against any abnormal situations (very actual when one use high activity Actinide targets e.g.)
What is the experimentalist see (control & monitoring system)

#1 beam on Chopper off

#2 beam off Chopper ON!
Target for synthesis of the heaviest isotopes of element 118 in the $^{249-251}\text{Cf} + \text{^{48}Ca}$ reaction

<table>
<thead>
<tr>
<th>Isotope</th>
<th>Half-life (years)</th>
<th>Mass (mg)</th>
<th>Abundance (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>^{249}Cf</td>
<td>351</td>
<td>5.61 mg</td>
<td>50.7%</td>
</tr>
<tr>
<td>^{250}Cf</td>
<td>13</td>
<td>1.43 mg</td>
<td>12.9%</td>
</tr>
<tr>
<td>^{251}Cf</td>
<td>898</td>
<td>4.03 mg</td>
<td>36.4%</td>
</tr>
<tr>
<td>^{252}Cf</td>
<td>2.65</td>
<td>0.002 mg</td>
<td>0.02%</td>
</tr>
</tbody>
</table>

12 target sectors are in Dubna, Average thickness 0.35 mg/cm²

work on mixed Cf at REDC
Results of the experiments in 2002, 2005 and 2012.

\[\text{Cf}^{249} + \text{Ca}^{48} \]
Steps in target 249Bk production (ORNL+JINR)

Isotopes 249Bk and 249Cf were produced in ORNL (USA)
By 250 days irradiation of targets Cm and Am
With thermal neutrons flow $2.5 \times 10^{15} \text{n/cm}^2\cdot\text{c}$ of HFIR reactor

22 mg pure Bk
..a few words about information technologies: Method of “active correlations”

// in use (different versions) ~ since 2000

Time-energy-position correlation ER-alpha detected in a real-time mode

Provides beam stop for a short time. In the case of detecting next alpha decay signal in the same position “beam-off” interval is prolonged for a few times. Beam interrupting is performed at the position of injection line (~ 18 kV)

1) Algorithm itself (ER-α)
2) Detection system
3) \[E_{\text{ER}}(\text{registered}) = f(E_{\text{incoming}}) \]

Yu.S.Tsyganov & A.N.Polyakov

PC simulation ER spectra

Systematic with heavy nuclei measurements
...for **Dynamic** Background Suppression.

- **Active correlations method**
- *It means that:*

 - To search for in a real-time mode pointer to a potential ER(implanted)-alpha correlation;

 - To create short break points in target irradiation; (def)short = \(\sum_{i=1}^{N} \Delta t_i << T_{\text{experiment}} \)

 - To detect forthcoming alpha decays (or even SF decay) in a background free mode, that is, when suppression factor in the value of probability to be a random decreases by several orders of magnitudes (6-9, usually, depending on number of chains).

Data flow

```
START EXPERIMENT
```

```
t1  t2  ...  ti  N
```

```
End Experiment
```

Short break points (pauses) in the target irradiation process 1,2...i..N

- **EVR**

- **beam On**

- **Time**

- **beam OFF**

- **N(N-1)/2 graph edges**

 If **N- number of nodes**

METHOD OF “ACTIVE CORRELATIONS”

Detection System
~40 mcS

Separator

Actinide Target

Cyclotron
~60 mcS

Orbit life-time
~10 mcS

0/500 V

Beam Chopper

ON/OFF

Data Store

Synology DS1511+

Injection line

ECR ion source

243Am+48Ca → 288Mc+3n

E_{lab} = 248 MeV

beam-off

beam-on (1/10)

211Po

214Po

212Po

(α+e⁻)

213Po

(α+e⁻)

276Mt, 280Rg

276Bh

284

counts / 20 keV

α-particle energy (MeV)
ER registered energy

(due to large PHD, nuclei scattering in Si mostly, not recombination: \(PHD = \Delta_{\text{WIN}} + \Delta_{\text{ST}} + \Delta_{\text{R}} \))

Arrows - six events from two

\(^{240}\text{Pu} + ^{48}\text{Ca} \rightarrow {}^{*}\text{Fl} \) experiments

Masses, z’s ~ from Th to No.. Stars \(\rightarrow \) from GSI, Riken (single events..from Dr.’s S.Hofmann, Morita Kosuke)...

PC simulation of ER (registered energy):
Yu.Tsyganov & A.Polyakov
Synthesis of neutron-deficient isotopes

240Pu + 48Ca reaction

- **Target**: 0.49 mg/cm2
- **Energy of 48Ca**: 245 MeV
- **Excitation energy**: 36.5 – 41.1 MeV
- **Beam dose**: 4.0×10^{18}

Diagram showing the synthesis of isotopes: 240Pu + 48Ca leading to various isotopes with their respective energy levels and lifetimes.
2nd experiment (2016-2017)
E (lab) = 250 MeV Dose~1.4×10^{19}

PC simulation of ER (registered energy):
Yu. Tsyganov & A. Polyakov

A588 (2006) 329-332

FLNR-ORNL-LLNL-IMP collaboration.
Measured cross section is lower by factor of 20 than theoretical predictions and by factor of 50 than values measured in the reaction with 244Pu. Decrease of stability (fission barriers) of neutron-deficient Fl isotopes.
Decrease of SF half-lives of even-even isotopes of Cn and Fl with receding magic number $N=184$

Approaching the border of region of SHN
ПЕРИОДИЧЕСКАЯ ТАБЛИЦА ЭЛЕМЕНТОВ
Д. И. МЕНДЕЛЕЕВА

Лантаноиды

Актиноиды

За последние 60 лет 10 новых элементов были открыты в ОИЯИ

Карта нуклидов

Остров стабильности — петля, в которой области с равной степенью стабильности (исключая нуклиды, временно нестабильные, и одноядерные женские магнитные волокна) расположены вдоль ограничивающих кары Мантина. Остров стабильности равен 116. С 1999 года ОИЯИ началась активная работа по поиску новых элементов.

Элемент 118 под номером 118 (Og) в 2017 году успешно создан в ОИЯИ. Элемент 118 является членом острова стабильности и получает название 'Og'.
Confirmations (2007-2014)

<table>
<thead>
<tr>
<th>A/Z</th>
<th>Setup</th>
<th>Laboratory</th>
<th>Publications</th>
</tr>
</thead>
<tbody>
<tr>
<td>$^{283}_{112}$</td>
<td>COLD</td>
<td>PSI-FLNR (JINR)</td>
<td>NATURE 447, 72 (2007)</td>
</tr>
<tr>
<td>$^{286, 287}_{114}$</td>
<td>BGS</td>
<td>LRNL (Berkeley)</td>
<td>P.R. Lett. 103, 132502 (2009)</td>
</tr>
<tr>
<td>$^{287, 288}_{115}$</td>
<td>TASCA</td>
<td>GSI – Mainz</td>
<td>P.R. Lett. 111, 112502 (2013)</td>
</tr>
<tr>
<td>$^{294}_{117}$</td>
<td>TASCA</td>
<td>GSI-Mainz</td>
<td>P.R. Lett. 112, 172501 (2014)</td>
</tr>
</tbody>
</table>
Changing the projectile into 50Ti, 54Cr, 64Ni

$GSI, TASCA: ^{50}$Ti + 249Bk \rightarrow 119 limit < 70 fb

V. Zagrebayev calc. 50Ti + 243Am \rightarrow 293117

DC 280 high intensity HI cyclotron (FLNR, JINR)

SHE Factory of FLNR (JINR)

Status: May 25, 2018

Status: 10/05/2017

Status 11/09/2015

Status 11/09/2015
It will be very interesting and important similar calculation of Prof. Feng-Shou Zhang BNU Group!!!
SHE-Factory

U-400 Cyclotron

existing building 131

DGFRS

Low Energy RI-beams from U-400M Cyclotron

DC-280 - new accelerator

1000m²
Increase a beam dose

- It requires to increase:
 - Beam intensity
 - Beam time

<table>
<thead>
<tr>
<th>New accelerator</th>
</tr>
</thead>
<tbody>
<tr>
<td>SHE-Factory</td>
</tr>
<tr>
<td>~ 7000 h/year</td>
</tr>
</tbody>
</table>

Production today: $4.5 \cdot 10^{19}$

With factory: $1.3 \cdot 10^{21}$

Factor: 30

A limit of the beam intensity is defined entirely by target resistance and available amount of target material.
Electricity power supply devices
room for new physical setups
Operating together with DC-280
On-line separators for the Dubna Superheavy Element Factory

A.G. Popeko *

Flerov Laboratory of Nuclear Reactions, JINR, 141980 Dubna, Russia

ARTICLE INFO

Article history:
Received 31 August 2015
Received in revised form 10 February 2016
Accepted 10 February 2016
Available online 27 February 2016

Keywords:
Electromagnetic separators
Velocity filters

ABSTRACT

The main goal of creation of a Superheavy Element Factory at the Flerov Laboratory of Nuclear Reactions (FLNR) is to sufficiently improve the efficiency of studies on heavy and superheavy nuclei. The factory will be based on a high-current DC-280 cyclotron. The use of beams with the intensity up to $6 \times 10^{13} \text{s}^{-1}$ (10 pA) requires effective separators providing high suppression of unwanted reaction products. Following the analysis of the kinematic characteristics of several hundreds of reactions, a conclusion was drawn that it is necessary to construct three separators optimized for specific tasks: a universal gas-filled separator for synthesis and study of the properties of heavy isotopes, a velocity filter for spectroscopic investigations, and a pre-separator for further chemical separation and precise mass measurements.
More flexible design of active correlation method.
Idea: to use probabilities except for fixed time intervals.
Condition to stop irradiation: $P_{ij} < \varepsilon$
SUMMARY:

Yu.Tsyganov // IWND2018

1) After discovery Z=114-118 (Fl,Mc,Lv,Ts,Og) elements to go to Z=119,120 synthesis new DC-280 ultra intense cyclotron of FLNR will put into operation together with new gas filled recoil separator in the beginning of 2019.

2) Prototype of new GFS (DC-280 project) is designed and tested at U-400 main FLNR cyclotron 50Ti beam.

3) New version of active correlation method more flexible algorithm design is in progress now.
Thank you for your attention!